Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.398
Filtrar
1.
J Biol Chem ; 300(3): 105767, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367672

RESUMO

Approximately 5 to 15% of nonmedullary thyroid cancers (NMTC) present in a familial form (familial nonmedullary thyroid cancers [FNMTC]). The genetic basis of FNMTC remains largely unknown, representing a limitation for diagnostic and clinical management. Recently, germline mutations in DNA repair-related genes have been described in cases with thyroid cancer (TC), suggesting a role in FNMTC etiology. Here, two FNMTC families were studied, each with two members affected with TC. Ninety-four hereditary cancer predisposition genes were analyzed through next-generation sequencing, revealing two germline CHEK2 missense variants (c.962A > C, p.E321A and c.470T > C, p.I157T), which segregated with TC in each FNMTC family. p.E321A, located in the CHK2 protein kinase domain, is a rare variant, previously unreported in the literature. Conversely, p.I157T, located in CHK2 forkhead-associated domain, has been extensively described, having conflicting interpretations of pathogenicity. CHK2 proteins (WT and variants) were characterized using biophysical methods, molecular dynamics simulations, and immunohistochemistry. Overall, biophysical characterization of these CHK2 variants showed that they have compromised structural and conformational stability and impaired kinase activity, compared to the WT protein. CHK2 appears to aggregate into amyloid-like fibrils in vitro, which opens future perspectives toward positioning CHK2 in cancer pathophysiology. CHK2 variants exhibited higher propensity for this conformational change, also displaying higher expression in thyroid tumors. The present findings support the utility of complementary biophysical and in silico approaches toward understanding the impact of genetic variants in protein structure and function, improving the current knowledge on CHEK2 variants' role in FNMTC genetic basis, with prospective clinical translation.


Assuntos
Quinase do Ponto de Checagem 2 , Síndromes Neoplásicas Hereditárias , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Quinase do Ponto de Checagem 2/química , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Síndromes Neoplásicas Hereditárias/genética , Estudos Prospectivos , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Domínios Proteicos , Masculino , Feminino , Pessoa de Meia-Idade
2.
J Pathol ; 262(4): 395-409, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38332730

RESUMO

Splicing is controlled by a large set of regulatory elements (SREs) including splicing enhancers and silencers, which are involved in exon recognition. Variants at these motifs may dysregulate splicing and trigger loss-of-function transcripts associated with disease. Our goal here was to study the alternatively spliced exons 8 and 10 of the breast cancer susceptibility gene CHEK2. For this purpose, we used a previously published minigene with exons 6-10 that produced the expected minigene full-length transcript and replicated the naturally occurring events of exon 8 [Δ(E8)] and exon 10 [Δ(E10)] skipping. We then introduced 12 internal microdeletions of exons 8 and 10 by mutagenesis in order to map SRE-rich intervals by splicing assays in MCF-7 cells. We identified three minimal (10-, 11-, 15-nt) regions essential for exon recognition: c.863_877del [ex8, Δ(E8): 75%] and c.1073_1083del and c.1083_1092del [ex10, Δ(E10): 97% and 62%, respectively]. Then 87 variants found within these intervals were introduced into the wild-type minigene and tested functionally. Thirty-eight of them (44%) impaired splicing, four of which (c.883G>A, c.883G>T, c.884A>T, and c.1080G>T) induced negligible amounts (<5%) of the minigene full-length transcript. Another six variants (c.886G>A, c.886G>T, c.1075G>A, c.1075G>T, c.1076A>T, and c.1078G>T) showed significantly strong impacts (20-50% of the minigene full-length transcript). Thirty-three of the 38 spliceogenic variants were annotated as missense, three as nonsense, and two as synonymous, underlying the fact that any exonic change is capable of disrupting splicing. Moreover, c.883G>A, c.883G>T, and c.884A>T were classified as pathogenic/likely pathogenic variants according to ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based criteria. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Processamento Alternativo , Splicing de RNA , Humanos , Splicing de RNA/genética , Éxons/genética , Reino Unido , Quinase do Ponto de Checagem 2/genética
4.
Thyroid ; 34(4): 477-483, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279823

RESUMO

Background: Germline pathogenic variants in CHEK2 are associated with a moderate increase in the lifetime risk for breast cancer. Increased risk for other cancers, including non-medullary thyroid cancer (NMTC), has also been suggested. To date, data implicating CHEK2 variants in NMTC predisposition primarily derive from studies within Poland, driven by a splice site variant (c.444 + 1G>A) that is uncommon in other populations. In contrast, the predominant CHEK2 variants in non-Polish populations are c.1100del and c.470T>C/p.I157T, representing 61.1% and 63.8%, respectively, of all CHEK2 pathogenic variants in two large U.S.-based commercial laboratory datasets. To further delineate the impact of common CHEK2 variants on thyroid cancer, we aimed to investigate the association of three CHEK2 founder variants (c.444 + 1G>A, c.1100del, and c.470T>C/p.Ile157Thr) on NMTC susceptibility in three groups of unselected NMTC patients. Methods: The presence of three CHEK2 founder variants was assessed within three groups: (1) 1544 NMTC patients (and 1593 controls) from previously published genome-wide association study (GWAS) analyses, (2) 789 NMTC patients with germline exome sequencing (Oncology Research Information Exchange Network [ORIEN] Avatar), and (3) 499 NMTC patients with germline sequence data available in The Cancer Genome Atlas (TCGA). A case-control study design was utilized with odds ratios (ORs) calculated by comparison of all three groups with the Ohio State University GWAS control group. Results: The predominant Polish variant (c.444 + 1G>A) was present in only one case. The proportion of patients with c.1100del was 0.92% in the GWAS group, 1.65% in the ORIEN Avatar group, and 0.80% in the TCGA group. The ORs (with 95% confidence intervals [CIs]) for NMTC associated with c.1100del were 1.71 (0.73-4.29), 2.64 (0.95-7.63), and 2.5 (0.63-8.46), respectively. The proportion of patients with c.470T>C/p.I157T was 0.91% in the GWAS group, 0.76% in the ORIEN Avatar group, and 0.80% in the TCGA group, respectively. The ORs (with CIs) for NMTC associated with c.470T>C/p.I157T were 1.75 (0.74-4.39), 1.52 (0.42-4.96), and 2.31 (0.58-7.90), respectively. Conclusions: Our analyses of unselected patients with NMTC suggest that CHEK2 variants c.1100del and c.470T>C/p.I157T have only a modest impact on thyroid cancer risk. These results provide important information for providers regarding the relatively low magnitude of thyroid cancer risk associated with these CHEK2 variants.


Assuntos
Quinase do Ponto de Checagem 2 , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Estudos de Casos e Controles , Quinase do Ponto de Checagem 2/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Mutação em Linhagem Germinativa , Neoplasias da Glândula Tireoide/genética
5.
J Cell Biochem ; 125(1): 89-99, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047473

RESUMO

Checkpoint kinases Chk1, Chk2, Wee1 are playing a key role in DNA damage response and genomic integrity. Cancer-associated mutations identified in human Chk1, Chk2, and Wee1 were retrieved to understand the function associated with the mutation and also alterations in the folding pattern. Therefore, an attempt has been made to identify deleterious effect of variants using in silico and structure-based approach. Variants of uncertain significance for Chk1, Chk2, and Wee1 were retrieved from different databases and four prediction servers were employed to predict pathogenicity of mutations. Further, Interpro, I-Mutant 3.0, Consurf, TM-align, and have (y)our protein explained were used for comprehensive study of the deleterious effects of variants. The sequences of Chk1, Chk2, and Wee1 were analyzed using Clustal Omega, and the three-dimensional structures of the proteins were aligned using TM-align. The molecular dynamics simulations were performed to explore the differences in folding pattern between Chk1, Chk2, Wee1 wild-type, and mutant protein and also to evaluate the structural integrity. Thirty-six variants in Chk1, 250 Variants in Chk2, and 29 in Wee1 were categorized as pathogenic using in silico prediction tools. Furthermore, 25 mutations in Chk1, 189 in Chk2, and 14 in Wee1 were highly conserved, possessing deleterious effect and also influencing the protein structure and function. These identified mutations may provide underlying genetic intricacies to serve as potential targets for therapeutic inventions and clinical management.


Assuntos
Neoplasias , Proteínas Quinases , Humanos , Proteínas Quinases/metabolismo , Quinase 1 do Ponto de Checagem/genética , Mutação , Quinase do Ponto de Checagem 2/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
6.
Breast ; 73: 103611, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039887

RESUMO

To determine the changes in surveillance category by adding a polygenic risk score based on 311 breast cancer (BC)-associated variants (PRS311), questionnaire-based risk factors and breast density on personalized BC risk in unaffected women from Dutch CHEK2 c.1100delC families. In total, 117 unaffected women (58 heterozygotes and 59 non-carriers) from CHEK2 families were included. Blood-derived DNA samples were genotyped with the GSAMDv3-array to determine PRS311. Lifetime BC risk was calculated in CanRisk, which uses data from the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA). Women, were categorized into three surveillance groups. The surveillance advice was reclassified in 37.9 % of heterozygotes and 32.2 % of non-carriers after adding PRS311. Including questionnaire-based risk factors resulted in an additional change in 20.0 % of heterozygotes and 13.2 % of non-carriers; and a subanalysis showed that adding breast density on top shifted another 17.9 % of heterozygotes and 33.3 % of non-carriers. Overall, the majority of heterozygotes were reclassified to a less intensive surveillance, while non-carriers would require intensified surveillance. The addition of PRS311, questionnaire-based risk factors and breast density to family history resulted in a more personalized BC surveillance advice in CHEK2-families, which may lead to more efficient use of surveillance.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/epidemiologia , Densidade da Mama , Predisposição Genética para Doença , Quinase do Ponto de Checagem 2/genética , Fatores de Risco , Estilo de Vida , Células Germinativas
7.
Clin Chim Acta ; 552: 117695, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061684

RESUMO

BACKGROUND AND AIMS: Cancer predisposition goes beyond BRCA and DNA Mismatch Repair (MMR) genes since multi-gene panel testing has become the routine diagnostic tool for hereditary cancer suspicion (HCS) cases. CHEK2 and PALB2 are some of the foremost-mutated non-BRCA/MMR actionable genes in families with a significant familial aggregation. Therefore, the purpose of this work is to unravel which tumours other than breast, ovary or colorectal display the patients. MATERIALS AND METHODS: We have analysed 528 probands that meet the inclusion criteria for Hereditary Breast and Ovarian Cancer and Lynch Syndrome established by our Hereditary Cancer Regional Program with a customized 35 genes-panel by using Ion Torrent™ Technology. RESULTS: We have identified pathogenic variants (PVs) in 61 families (1.55%), of which more than half (31 probands) harboured PVs in CHEK2 and PALB2 genes. Ours results reveal that not only were PVs CHEK2 and PALB2 carriers more likely to have family history of cancer not limited to breast, ovarian or colorectal cancers, but also they are prone to other extracolonic cancers, noteworthy endometrial and gastric cancers. CONCLUSIONS: Multigene panel testing improves the chance of finding PVs in actionable genes in families with HCS. In addition, the coexistence of variants should be recorded to implement a polygenic risk algorithm that might explain the missing heritability in the aforementioned families.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Neoplasias Ovarianas , Feminino , Humanos , Mutação em Linhagem Germinativa/genética , Predisposição Genética para Doença , Neoplasias Ovarianas/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias da Mama/genética , Testes Genéticos/métodos , Quinase do Ponto de Checagem 2/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética
8.
Clin Chem ; 70(1): 319-338, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37725924

RESUMO

BACKGROUND: Disrupted pre-mRNA splicing is a frequent deleterious mechanism in hereditary cancer. We aimed to functionally analyze candidate spliceogenic variants of the breast cancer susceptibility gene CHEK2 by splicing reporter minigenes. METHODS: A total of 128 CHEK2 splice-site variants identified in the Breast Cancer After Diagnostic Gene Sequencing (BRIDGES) project (https://cordis.europa.eu/project/id/634935) were analyzed with MaxEntScan and subsetted to 52 variants predicted to impact splicing. Three CHEK2 minigenes, which span all 15 exons, were constructed and validated. The 52 selected variants were then genetically engineered into the minigenes and assayed in MCF-7 (human breast adenocarcinoma) cells. RESULTS: Of 52 variants, 46 (88.5%) impaired splicing. Some of them led to complex splicing patterns with up to 11 different transcripts. Thirty-four variants induced splicing anomalies without any trace or negligible amounts of the full-length transcript. A total of 89 different transcripts were annotated, which derived from different events: single- or multi-exon skipping, alternative site-usage, mutually exclusive exon inclusion, intron retention or combinations of the abovementioned events. Fifty-nine transcripts were predicted to introduce premature termination codons, 7 kept the original open-reading frame, 5 removed the translation start codon, 6 affected the 5'UTR (Untranslated Region), and 2 included missense variations. Analysis of variant c.684-2A > G revealed the activation of a non-canonical TG-acceptor site and exon 6 sequences critical for its recognition. CONCLUSIONS: Incorporation of minigene read-outs into an ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme allowed us to classify 32 CHEK2 variants (27 pathogenic/likely pathogenic and 5 likely benign). However, 20 variants (38%) remained of uncertain significance, reflecting in part the complex splicing patterns of this gene.


Assuntos
Processamento Alternativo , Neoplasias da Mama , Humanos , Feminino , Splicing de RNA , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Éxons , Íntrons , Sítios de Splice de RNA/genética , Quinase do Ponto de Checagem 2/genética
9.
Breast Cancer Res Treat ; 204(1): 171-179, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38091153

RESUMO

PURPOSE: Germline pathogenic variants in checkpoint kinase 2 (CHEK2) are associated with a moderately increased risk of breast cancer (BC). The spectrum of clinicopathologic features and genetics of these tumors has not been fully established. METHODS: We characterized the histopathologic and clinicopathologic features of 44 CHEK2-associated BCs from 35 women, and assessed responses to neoadjuvant chemotherapy. A subset of cases (n = 23) was additionally analyzed using targeted next-generation DNA sequencing (NGS). RESULTS: Most (94%, 33/35) patients were heterozygous carriers for germline CHEK2 variants, and 40% had the c.1100delC allele. Two patients were homozygous, and five had additional germline pathogenic variants in ATM (2), PALB2 (1), RAD50 (1), or MUTYH (1). CHEK2-associated BCs occurred in younger women (median age 45 years, range 25-75) and were often multifocal (20%) or bilateral (11%). Most (86%, 38/44) were invasive ductal carcinomas of no special type (IDC-NST). Almost all (95%, 41/43) BCs were ER + (79% ER + HER2-, 16% ER + HER2 + , 5% ER-HER2 +), and most (69%) were luminal B. Nottingham grade, proliferation index, and results of multiparametric molecular testing were heterogeneous. Biallelic CHEK2 alteration with loss of heterozygosity was identified in most BCs (57%, 13/23) by NGS. Additional recurrent alterations included GATA3 (26%), PIK3CA (226%), CCND1 (22%), FGFR1 (22%), ERBB2 (17%), ZNF703 (17%), TP53 (9%), and PPM1D (9%), among others. Responses to neoadjuvant chemotherapy were variable, but few patients (21%, 3/14) achieved pathologic complete response. Most patients (85%) were without evidence of disease at time of study (n = 34). Five patients (15%) developed distant metastasis, and one (3%) died (mean follow-up 50 months). CONCLUSION: Almost all CHEK2-associated BCs were ER + IDC-NST, with most classified as luminal B with or without HER2 overexpression. NGS supported the luminal-like phenotype and confirmed CHEK2 as an oncogenic driver in the majority of cases. Responses to neoadjuvant chemotherapy were variable but mostly incomplete.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Quinase do Ponto de Checagem 2/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Células Germinativas , Proteínas de Transporte/genética
10.
Cancer Lett ; 588: 216595, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38097135

RESUMO

Immune checkpoint blockade (ICB) therapy has improved treatment effects in multiple cancers. Gene mutations in the DNA damage repair pathway (DDR) may cause genomic instability and may relate to the efficacy of ICB. Checkpoint kinase 2 (CHEK2) and polymerase epsilon (POLE) are important genes in the DDR. In this study, we aimed to study the impact of CHEK2 deficiency mutations on the response to ICB. We found that tumors with CHEK2 mutations had a significantly higher tumor mutational burden (TMB) compared to those with CHEK2-WT in a pancancer database. We noted that CHEK2 deficiency mutations potentiated the anti-tumor effect of anti-PD-1 therapy in MC38 and B16 tumor-bearing mice with the decrease of tumor volume and tumor weight after anti-PD-1 treatment. Mechanistically, CHEK2 deficiency tumors were with the increased cytotoxic CD8+ T-cell infiltration, especially cytotoxic CD8+ T cells, and modulated the tumor-immune microenvironment with an upregulated immune inflammatory pathway and antigen presentation pathway after anti-PD-1 treatment. Furthermore, murine models with POLE mutations confirmed that CHEK2 deficiency shaped similar mutational and immune landscapes as POLE mutations after anti-PD-1 treatment. Taken together, our results demonstrated that CHEK2 deficiency mutations may increase the response to ICB (eg. anti-PD-1) by influencing the tumor immune microenvironment. This indicated that CHEK2 deficiency mutations were a potentially predictive biomarker and CHEK2 deficiency may potentiate response to immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Camundongos , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos , Quinase do Ponto de Checagem 2/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Mutação , Imunoterapia/métodos , Microambiente Tumoral
11.
J Med Genet ; 61(4): 385-391, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38123987

RESUMO

BACKGROUND: The identification of germline pathogenic gene variants (PGVs) in triple negative breast cancer (TNBC) is important to inform further primary cancer risk reduction and TNBC treatment strategies. We therefore investigated the contribution of breast cancer associated PGVs to familial and isolated invasive TNBC. METHODS: Outcomes of germline BRCA1, BRCA2 and CHEK2_c.1100delC testing were recorded in 1514 women (743-isolated, 771-familial), and for PALB2 in 846 women (541-isolated, 305-familial), with TNBC and smaller numbers for additional genes. Breast cancer free controls were identified from Predicting Risk Of Cancer At Screening and BRIDGES (Breast cancer RIsk after Diagnostic GEne Sequencing) studies. RESULTS: BRCA1_PGVs were detected in 52 isolated (7.0%) and 195 (25.3%) familial cases (isolated-OR=58.9, 95% CI: 16.6 to 247.0), BRCA2_PGVs in 21 (2.8%) isolated and 67 (8.7%) familial cases (isolated-OR=5.0, 95% CI: 2.3 to 11.2), PALB2_PGVs in 9 (1.7%) isolated and 12 (3.9%) familial cases (isolated-OR=8.8, 95% CI: 2.5 to 30.4) and CHEK2_c.1100delC in 0 isolated and 3 (0.45%) familial cases (isolated-OR=0.0, 95% CI: 0.00 to 2.11). BRCA1_PGV detection rate was >10% for all familial TNBC age groups and significantly higher for younger diagnoses (familial: <50 years, n=165/538 (30.7%); ≥50 years, n=30/233 (12.9%); p<0.0001). Women with a G3_TNBC were more likely to have a BRCA1_PGV as compared with a BRCA2 or PALB2_PGV (p<0.0001). 0/743 isolated TNBC had the CHEK2_c.1100delC PGV and 0/305 any ATM_PGV, but 2/240 (0.83%) had a RAD51D_PGV. CONCLUSION: PGVs in BRCA1 are associated with G3_TNBCs. Familial TNBCs and isolated TNBCs <30 years have a >10% likelihood of a PGV in BRCA1. BRCA1_PGVs are associated with younger age of familial TNBC. There was no evidence for any increased risk of TNBC with CHEK2 or ATM PGVs.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Proteína BRCA2 , Neoplasias da Mama , Proteína do Grupo de Complementação N da Anemia de Fanconi , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Mama/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Predisposição Genética para Doença , Genes BRCA2 , Genes BRCA1 , Células Germinativas/patologia , Mutação em Linhagem Germinativa/genética , Quinase do Ponto de Checagem 2/genética , Proteínas de Ligação a DNA/genética , Proteína BRCA1/genética
13.
Ann Med ; 55(2): 2281659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38039548

RESUMO

PURPOSE: Individual genetic background can play an essential role in determining the development of esophageal squamous cell carcinoma (ESCC). PTPN13 and CHEK2 play important roles in the pathogenesis of ESCC. This case-control study aimed to analyze the association between gene polymorphisms and ESCC susceptibility. METHODS: DNA was extracted from the peripheral blood of patients. The Agena MassARRAY platform was used for the genotyping. Statistical analysis was conducted using the chi-squared test or Fisher's exact test, logistic regression analysis, and stratification analysis. RESULTS: The 'G' allele of rs989902 (PTPN13) and the 'T' allele of rs738722 (CHEK2) were both associated with an increased risk of ESCC (rs989902: OR = 1.23, 95% CI = 1.02-1.47, p = 0.028; rs738722: OR = 1.28, 95% CI = 1.06-1.55, p = 0.011). Stratification analysis showed that SNPs (rs989902 and rs738722) were notably correlated with an increased risk of ESCC after stratification for age, sex, smoking, and drinking status. In addition, rs738722 might be associated with lower stage, while rs989902 had a lower risk of metastasis. CONCLUSION: Our findings display that PTPN13 rs989902 and CHEK2 rs738722 are associated with an increased risk of ESCC in the Chinese Han population.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas/genética , Predisposição Genética para Doença , Estudos de Casos e Controles , Polimorfismo de Nucleotídeo Único , China/epidemiologia , Genótipo , Quinase do Ponto de Checagem 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética
14.
Sci Rep ; 13(1): 21928, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081888

RESUMO

Checkpoint kinase 2 (CHEK2) plays a crucial role in responding to DNA damage and is linked to diverse cancer types. However, its significance in the prediction of prognosis and impacts on the immune status of clear cell renal cell carcinoma (ccRCC) remains unclear. This study aimed to identify the role of CHEK2 in prognosis and immune microenvironment of ccRCC. We analyzed transcriptome and clinicopathological data from the cancer genome atlas (TCGA) database and conducted functional enrichment analysis to explore molecular mechanisms. The relationship between CHEK2 and immune infiltration was evaluated, and drug sensitivity analysis was performed using the CellMiner database. The results showed that CHEK2 was an independent predictor of ccRCC prognosis and was closely associated with immune-related processes. Additionally, high expression of CHEK2 was linked to resistance to certain targeted drugs. These findings suggest that CHEK2 could serve as a biomarker for ccRCC, providing insights into tumor immune microenvironment alterations and immunotherapeutic response. Further investigation is needed to fully understand the potential of CHEK2 as a prognostic predictor and therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Quinase do Ponto de Checagem 2/genética , Prognóstico , Neoplasias Renais/genética , Microambiente Tumoral/genética
15.
Cell Rep ; 42(11): 113360, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38007689

RESUMO

DNA damage elicits a checkpoint response depending on the Mec1/ATR kinase, which detects the presence of single-stranded DNA and activates the effector kinase Rad53/CHK2. In Saccharomyces cerevisiae, one of the signaling circuits leading to Rad53 activation involves the evolutionarily conserved 9-1-1 complex, which acts as a platform for the binding of Dpb11 and Rad9 (referred to as the 9-1-1 axis) to generate a protein complex that allows Mec1 activation. By examining the effects of both loss-of-function and hypermorphic mutations, here, we show that the Cdc55 and Tpd3 subunits of the PP2A phosphatase counteract activation of the 9-1-1 axis. The lack of this inhibitory function results in DNA-damage sensitivity, sustained checkpoint-mediated cell-cycle arrest, and impaired resection of DNA double-strand breaks. This PP2A anti-checkpoint role depends on the capacity of Cdc55 to interact with Ddc1 and to counteract Ddc1-Dpb11 complex formation by preventing Dpb11 recognition of Ddc1 phosphorylated on Thr602.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dano ao DNA , Fosforilação , DNA/metabolismo , Quinase do Ponto de Checagem 2/genética
16.
ESMO Open ; 8(6): 102041, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852034

RESUMO

BACKGROUND: The Belgian Precision initiative aims to maximize the implementation of tumor-agnostic next-generation sequencing in patients with advanced cancer and enhance access to molecularly guided treatment options. Academic tumor-agnostic basket phase II studies are part of this initiative. The current investigator-driven trial aimed to investigate the efficacy of olaparib in advanced cancers with a (likely) pathogenic mutation (germline or somatic) in a gene that plays a role in homologous recombination (HR). PATIENTS AND METHODS: This open-label, multi-cohort, phase II study examines the efficacy of olaparib in patients with an HR gene mutation in their tumor and disease progression on standard of care. Patients with a somatic or germline mutation in the same gene define a cohort. For each cohort, a Simon minimax two-stage design was used. If a response was observed in the first 13 patients, 14 additional patients were included. Here, we report the results on four completed cohorts: patients with a BRCA1, BRCA2, CHEK2 or ATM mutation. RESULTS: The overall objective response rate across different tumor types was 11% in the BRCA1-mutated (n = 27) and 21% in the BRCA2-mutated (n = 27) cohorts. Partial responses were seen in pancreatic cancer, gallbladder cancer, endocrine carcinoma of the pancreas and parathyroid cancer. One patient with a BRCA2 germline-mutated colon cancer has an ongoing complete response with 19+ months on treatment. Median progression-free survival in responding patients was 14+ months (5-34+ months). The clinical benefit rate was 63% in the BRCA1-mutated and 46% in the BRCA2-mutated cohorts. No clinical activity was observed in the ATM (n = 13) and CHEK2 (n = 14) cohorts. CONCLUSION: Olaparib showed efficacy in different cancer types harboring somatic or germline mutations in the BRCA1/2 genes but not in ATM and CHEK2. Patients with any cancer type harboring BRCA1/2 mutations should have access to olaparib.


Assuntos
Proteína BRCA2 , Neoplasias Pancreáticas , Humanos , Proteína BRCA2/genética , Proteína BRCA1/genética , Bélgica , Mutação , Células Germinativas , Quinase do Ponto de Checagem 2/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética
17.
Cell Mol Biol (Noisy-le-grand) ; 69(9): 118-124, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37807326

RESUMO

DNA damage of neurons is accumulated in Alzheimer's disease (AD). DNA damage-activated Checkpoint kinase 2 (CHEK2) is evaluated in Aß-treated Neuro2a APPSwe/Δ9 cells, and the miR-669b-5p was specifically down-regulated. However, the underlying molecular mechanism between CHEK2 and miR-669b-5p in Neuro2a APPSwe/Δ9 cells remains unclear. This research discovers that in A-treated Neuro2a APPSwe/Δ9 cells, CHEK2 expression and miR-669b-5p expression were inversely correlated. In addition, miR-669b-5p mimics increased cell survival and proliferation in Neuro2a APPSwe/Δ9 cells while decreasing the production of inflammatory cytokines and cell death. Furthermore, it is observed that CHEK2 was a miR-669b-5p downstream target gene and that CHEK2 restored the miR-669b-5p's functions. According to this research, miR-669b-5p is a potential therapy for Alzheimer's patients since it slows the advancement of the disease.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , MicroRNAs/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Neurônios/metabolismo , Sobrevivência Celular , Peptídeos beta-Amiloides/metabolismo
18.
Nucleic Acids Res ; 51(21): 11688-11705, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37850655

RESUMO

Rdh54 is a conserved DNA translocase that participates in homologous recombination (HR), DNA checkpoint adaptation, and chromosome segregation. Saccharomyces cerevisiae Rdh54 is a known target of the Mec1/Rad53 signaling axis, which globally protects genome integrity during DNA metabolism. While phosphorylation of DNA repair proteins by Mec1/Rad53 is critical for HR progression little is known about how specific post translational modifications alter HR reactions. Phosphorylation of Rdh54 is linked to protection of genomic integrity but the consequences of modification remain poorly understood. Here, we demonstrate that phosphorylation of the Rdh54 C-terminus by the effector kinase Rad53 regulates Rdh54 clustering activity as revealed by single molecule imaging. This stems from phosphorylation dependent and independent interactions between Rdh54 and Rad53. Genetic assays reveal that loss of phosphorylation leads to phenotypic changes resulting in loss-of-heterozygosity (LOH) outcomes. Our data highlight Rad53 as a key regulator of HR intermediates through activation and attenuation of Rdh54 motor function.


Assuntos
Recombinação Homóloga , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , DNA/metabolismo , Dano ao DNA , Fosforilação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Sci Adv ; 9(42): eadg0898, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862420

RESUMO

Cancer treatments can damage the ovarian follicle reserve, leading to primary ovarian insufficiency and infertility among survivors. Checkpoint kinase 2 (CHEK2) deficiency prevents elimination of oocytes in primordial follicles in female mice exposed to radiation and preserves their ovarian function and fertility. Here, we demonstrate that CHEK2 also coordinates the elimination of oocytes after exposure to standard-of-care chemotherapy drugs. CHEK2 activates two downstream targets-TAp63 and p53-which direct oocyte elimination. CHEK2 knockout or pharmacological inhibition preserved ovarian follicle reserve after radiation and chemotherapy. However, the lack of specificity for CHEK2 among available inhibitors limits their potential for clinical development. These findings demonstrate that CHEK2 is a master regulator of the ovarian cellular response to damage caused by radiation and chemotherapy and warrant the development of selective inhibitors specific to CHEK2 as a potential avenue for ovario-protective treatments.


Assuntos
Antineoplásicos , Oócitos , Feminino , Animais , Camundongos , Quinase do Ponto de Checagem 2/genética , Oócitos/fisiologia , Folículo Ovariano , Antineoplásicos/farmacologia , Ovário/fisiologia
20.
Cancer Genet ; 278-279: 84-90, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37839337

RESUMO

BACKGROUND AND AIMS: Heterozygous truncating pathogenic variants (PVs) in CHEK2 confer a 1.5 to 3-fold increased risk for breast cancer and may elevate colorectal cancer risks. Less is known regarding missense variants. Here we compared the cancer associations with truncating and missense PVs in CHEK2 across breast and colorectal cancer. METHODS: This was a retrospective analysis of 705,797 patients who received single laboratory multigene panel testing between 2013 and 2020. Multivariable logistic regression models determined cancer risk associated with CHEK2 variants as odds ratios (ORs) and 95% confidence intervals (CIs) after adjusting for age at diagnosis, cancer history, and ancestry. Breast and colorectal cancer analyses were performed using 6255 CHEK2 PVs, including truncating PVs (N = 4505) and missense PVs (N = 1750). RESULTS: CHEK2 PVs were associated with an increased risk of ductal invasive breast cancer (p < 0.001) and ductal carcinoma in situ (DCIS) (p < 0.001), with no statistically significant differences when truncating PVs (p < 0.001) and missense PVs (p < 0.001) were evaluated separately. All CHEK2 variants assessed conferred little to no risk of colorectal cancer. CONCLUSIONS: In our large cohort, CHEK2 truncating and missense PVs conferred similar risks for breast cancer and did not seem to elevate risk for colorectal cancer.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Humanos , Feminino , Estudos Retrospectivos , Predisposição Genética para Doença , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico , Mutação de Sentido Incorreto , Neoplasias Colorretais/genética , Quinase do Ponto de Checagem 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...